News & Events

Headlines

Sunash Sharma Receives 2018 Henry Ford II Scholar Award

06-22-18

Applied physics student Sunash Sharma, advised by Professor Stevan Nadj-Perge, is a recipient of the 2018 Henry Ford II Scholar Award. He has wide-ranging interests from biophysics to fluid mechanics to quantum computation. The Henry Ford II Scholar Award is funded under an endowment provided by the Ford Motor Company Fund. The award is made annually to engineering students with the best academic record at the end of the third year of undergraduate study.

Tags: APhMS honors Henry Ford II Scholar Award Stevan Nadj-Perge Sunash Sharma

Professor Nadj-Perge Named 2017 KNI-Wheatley Scholar

09-18-17

Stevan Nadj-Perge, Assistant Professor of Applied Physics and Materials Science, has been named the 2017 KNI-Wheatley Scholar in Nanoscience for his proposal to develop a novel nanofabrication technique to integrate atomic size objects, such as atomic chains, into superconducting interferometer devices. [Nurturing Nanoscience]

Tags: APhMS honors KNI Stevan Nadj-Perge

Engineering Nanodevices to Store Information the Quantum Way

05-27-16

Stevan Nadj-Perge, Assistant Professor of Applied Physics and Materials Science, is interested in creating a device that could harness the power of entangled particles within a usable technology. A large part of his research is focused on finding ways to store and process quantum information. Quantum information is very fragile and even the smallest amount of external noise messes up quantum states. There are various schemes that tackle this problem and postpone decoherence, but the one that he is most interested in involves Majorana fermions. Relatively recently theorists figured out how to engineer these particles in the lab. Nadj-Perge explains, “it turns out that, under certain conditions, when you combine certain materials and apply high magnetic fields at very cold temperatures, electrons will form a state that looks exactly as you would expect from Majorana fermions. Furthermore, such engineered states allow you to store quantum information in a way that postpones decoherence.” [Caltech story]

Tags: APhMS research highlight Stevan Nadj-Perge