News & Events


A Pathway to Longer-Lasting Lithium Batteries


The energy density of batteries have been a major challenge for consumer electronics, electric vehicles, and renewable energy sources. Professor Julia R. Greer has made a discovery that could lead to lithium-ion batteries that are both safer and more powerful. Findings provide guidance for how lithium-ion batteries, one of the most common kinds of rechargeable batteries, can safely hold up to 50 percent more energy. "Every power-requiring application would benefit from batteries with lithium instead of graphite anodes because they can power so much more," says Greer. "Lithium is lightweight, it doesn't occupy much space, and it's tremendously energy dense." [Caltech story]

Tags: APhMS research highlights MCE Julia Greer

Microstructures Self-Assemble into New Materials


A new process developed at Caltech makes it possible for the first time to manufacture large quantities of materials whose structure is designed at a nanometer scale—the size of DNA's double helix. Pioneered by Professor Julia R. Greer, "nanoarchitected materials" exhibit unusual, often surprising properties—for example, exceptionally lightweight ceramics that spring back to their original shape, like a sponge, after being compressed. Now, a team of engineers at Caltech and ETH Zurich have developed a material that is designed at the nanoscale but assembles itself—with no need for the precision laser assembly. "We couldn't 3-D print this much nanoarchitected material even in a month; instead we're able to grow it in a matter of hours," says Carlos M. Portela, Postdoctoral Scholar. "It is exciting to see our computationally designed optimal nanoscale architectures being realized experimentally in the lab," says Dennis M. Kochmann, Visiting Associate. [Caltech story]

Tags: APhMS research highlights GALCIT MCE Julia Greer Dennis Kochmann postdocs Carlos Portela

Best Paper Award


Postdoctoral Scholar Carlos M. Portela, working with Professor Julia Greer and Dennis Kochmann, has won the Gold Paper Award. The title of the paper is "Supersonic Impact on Carbon Nano-architected Materials." The award was granted to the best student contribution across all topic areas at the Society of Engineering Science (SES) 56th Technical Meeting.

Tags: APhMS honors Julia Greer Dennis Kochmann postdocs Carlos Portela

Professor Julia R. Greer Named Director of the Kavli Nanoscience Institute


Julia R. Greer, Ruben F. and Donna Mettler Professor of Materials Science, Mechanics and Medical Engineering, has been named the Fletcher Jones Foundation Director of the Kavli Nanoscience Institute (KNI). Greer replaces professors Oskar Painter and Nai-Chang Yeh, who served together as co-directors. "I am delighted to begin spearheading the wonderful enterprise of the KNI, humbly following the footsteps of my predecessors, professors Painter and Yeh. I have been a KNI member and on the board of directors since shortly after I arrived at Caltech," Greer says. [Caltech story]

Tags: APhMS honors MedE MCE Julia Greer

New Metamaterial Changes Shape in a Tunable Fashion


Julia R. Greer, Ruben F. and Donna Mettler Professor of Materials Science, Mechanics and Medical Engineering, has developed a new type of architected metamaterial that has the ability to change shape in a tunable fashion. The material has potential applications in next-generation energy storage and bio-implantable micro-devices. [Caltech story]

Tags: APhMS research highlights MedE Julia Greer

Professor Greer Receives the AAAFM Heeger Award


Julia R. Greer, Professor of Materials Science, Mechanics and Medical Engineering, has received the American Association for Advances in Functional Materials (AAAFM) Heeger Award for her pioneering research in creating and applying multi-scale 3D architected materials in chemical and biological devices, ultra-light weight energy storage systems, damage-tolerant fabrics, and additive manufacturing. [Award announcement]

Tags: honors MCE Julia Greer MatSci

New Materials Exhibit Split Personality


Julia Greer, Professor of Materials Science, Mechanics and Medical Engineering, and colleagues have determined that the failure of architected materials—the point at which they break when compressed or stretched—can be described using classical continuum mechanics, which models the behavior of a material as a continuous mass rather than as individual (or "discrete") particles. This finding implies a duality to the nature of these materials—in that they can be thought of both as individual particles and also as a single collective. [Caltech story]

Tags: APhMS research highlights MCE Julia Greer

Caltech Awarded Federal Funding for Quantum Research


EAS Professors were among a small group of Caltech scientists and engineering who have won federal grants for research in quantum computing, and quantum networks. Professor Nadj-Perge (lead PI) along with co-PIs Professors Marco Bernardi and Andrei Faraon as well as co-investigator Professor Julia Greer have received funding for the program ”Quantum States in Layered Heterostructures Controlled by Electrostatic Fields and Strain," which is administered within the U.S. Department of Energy's Basic Energy Sciences division. Professor Austin Minnich is a co-PI of the program, "Quantum simulation of materials and molecules using quantum computation," which is part of the National Science Foundation's Research Advanced by Interdisciplinary Science and Engineering (RAISE)-Transformational Advances in Quantum Systems (TAQS) effort. [Caltech story]

Tags: APhMS research highlights MCE Julia Greer Austin Minnich Andrei Faraon Marco Bernardi Stevan Nadj-Perge

New Process Allows 3-D Printing of Nanoscale Metal Structures


Professor Julia Greer and graduate student Andrey Vyatskikh have created complex nanoscale metal structures using 3-D printing. The process, once scaled up, could be used in a wide variety of applications and opens the door to the creation of a new class of materials with unusual properties that are based on their internal structure. [Caltech story]

Tags: research highlights MedE MCE Julia Greer MatSci Andrey Vyatskikh

Grad Student Makes Ultra-Sensitive Measurement of Deformation


Xiaoyue Ni, a materials science graduate student working with Professor Julia Greer, has shown that metals undergo permanent deformation even prior to yielding—the threshold at which a material under strain becomes permanently deformed. "What Xiaoyue's data are showing is that from the first moment you start deforming it, the dislocations start being active," Greer says. Now that we know how to do this, we can probe a variety of different classes of materials. [Caltech story]

Tags: APhMS research highlights Julia Greer Xiaoyue Ni