IQIM Postdoctoral and Graduate Student Seminar
Abstract: Realizing topological orders and topological quantum computation is a central task of modern physics. An important but notoriously hard question in this endeavor is how to diagnose topological orders that lack conventional order parameters. A breakthrough in this problem is the discovery of topological entanglement entropy, which can be used to detect nontrivial topological order from a ground state wave function, but is far from enough for fully determining the topological order. In this work, we take one step further in this direction: We propose a simple entanglement-based protocol for extracting the quantum dimensions of all anyons from a single ground state wave function in two dimensions. The choice of the space manifold and the ground state is arbitrary. This protocol is both validated in the continuum and verified on lattices, and we anticipate it to be realizable in various quantum simulation platforms.
Lunch will be provided on the lawn outside the Bridge building, following the talk.