Keith Schwab, Professor of Applied Physics and the Fletcher Jones Foundation Co-Director of the Kavli Nanoscience Institute, and colleagues have found a way to make measurements that go beyond the limits imposed by quantum physics. "Our mechanical device is a tiny square of aluminum—only 40 microns long, or about the diameter of a hair. We think of quantum mechanics as a good description for the behaviors of atoms and electrons and protons and all of that, but normally you don't think of these sorts of quantum effects manifesting themselves on somewhat macroscopic objects," Schwab says. "This is a physical manifestation of the uncertainty principle, seen in single photons impacting a somewhat macroscopic thing." [Caltech Release]
Written by
Trity Pourbahrami
Image Lightbox