Lasers have become relatively commonplace in everyday life, but they have many uses outside of providing light shows at raves and scanning barcodes on groceries. Lasers are also of great importance in telecommunications and computing as well as biology, chemistry, and physics research.
In those latter applications, lasers that can emit extremely short pulses—those on the order of one-trillionth of a second (one picosecond) or shorter—are especially useful. Using lasers operating on such small timescales, researchers can study physical and chemical phenomena that occur extremely quickly—for example, the making or breaking of molecular bonds in a chemical reaction or the movement of electrons within materials. These ultrashort pulses are also extensively used for imaging applications because they can have extremely large peak intensities but low average power, so they avoid heating or even burning up samples such as biological tissues.
In a paper appearing in the journal Science, Caltech's Alireza Marandi, an assistant professor of electrical engineering and applied physics, describes a new method developed by his lab for making this kind of laser, known as a mode-locked laser, on a photonic chip. The lasers are made using nanoscale components (a nanometer is one-billionth of a meter), allowing them to be integrated into light-based circuits similar to the electricity-based integrated circuits found in modern electronics. [Caltech story]