News & Events

Headlines

Studying Chaos with One of the World's Fastest Cameras

01-14-21

There are things in life that can be predicted reasonably well. The tides rise and fall. A billiard ball bounces around a table according to orderly geometry. And then there are things that defy easy prediction: The hurricane that changes direction without warning. The splashing of water in a fountain. These phenomena and others like them can be described as chaotic systems. Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has developed a new tool that might help to better understand chaotic systems. [Caltech story]

Tags: EE research highlights MedE Lihong Wang

Tiny Shape-Shifting Polymers Developed for Potential Medical Applications

01-04-21

Professor Julia Greer has developed a process for generating three-dimensional architected polymers with heat-dependent "shape memory" properties: that is, when heated, the material folds and unfolds itself into a new preordained shape. These shape memory polymers could one day be used to perform complex tasks inside the human body, such as unclogging a blocked artery or pulling out a blood clot. [Caltech story]

Tags: APhMS research highlights Julia Greer Luizetta Elliott

Lihong Wang Receives NIH BRAIN Grant

12-07-20

Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has received funding for neuroscience projects from the National Institutes of Health's Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Wang and his team aim to develop a technology called 3D photoacoustic computed tomography (PACT) that will rapidly image large-scale neural activity in human brains with high sensitivity. "Photoacoustic imaging of adult human brains is one of the most challenging frontiers in our field," says Wang. "It requires innovation to overcome the signal attenuation and wavefront distortion due to the skull. I'm glad that the NIH has the vision to fund this worthy research direction." [Caltech story]

Tags: EE research highlights MedE Lihong Wang

Titanium Atom That Exists in Two Places at Once in Crystal to Blame for Unusual Phenomenon

12-07-20

Crystals are usually good at conducting heat. By definition, their atomic structure is highly organized, which allows atomic vibrations—heat—to flow through them as a wave. Austin Minnich, Professor of Mechanical Engineering and Applied Physics, has discovered why a perfect crystal is not good at conducting heat, although it seemingly should be. "We have found that quantum mechanical effects can play a huge role in setting the thermal transport properties of materials even under familiar conditions like room temperature," says Austin Minnich. [Caltech story]

Tags: APhMS research highlights MCE Austin Minnich

AI-Driven COVID-19 Model Outperforms Competitors

11-30-20

While existing models to predict the spread of a disease already exist, few, if any, incorporate artificial intelligence (AI). Professor Yaser Abu-Mostafa is using a new model for predicting COVID-19's impact using AI and it dramatically outperforms other models, so much so that it has attracted the interest of public health officials across the country. "AI is a powerful tool, so it only makes sense to apply it to one of the most urgent problems the world faces," says Yaser Abu-Mostafa. [Caltech story]

Tags: EE research highlights CMS Yaser Abu-Mostafa

Solar Geoengineering May Not be a Long-Term Solution for Climate Change

11-23-20

Pumping aerosols into the atmosphere to reflect sunlight, thus cooling Earth, is one last-ditch method for dealing with climate change. According to new research, solar geoengineering may fail to prevent catastrophic warming in the long run. It would not prevent high atmospheric carbon dioxide concentrations from destabilizing low-lying clouds, opening the door to extreme warming. "Solar geoengineering ultimately may not fix the problem if high greenhouse gas emissions continue for more than a century," says Tapio Schneider, Theodore Y. Wu Professor of Environmental Science and Engineering; Jet Propulsion Laboratory Senior Research Scientist. [Caltech story]

Tags: research highlights ESE Tapio Schneider

Robotics Engineers Take on COVID-19

11-18-20

Methods that were originally created to help robots to walk and autonomous cars to drive safely can also help epidemiologists predict the spread of the COVID-19 pandemic. Professor Aaron Ames and colleagues took these tools and applied them to the development of an epidemiological methodology that accounts for human interventions (like mask mandates and stay-at-home orders). By utilizing the U.S. COVID-19 data from March through May, they were able to predict the infection wave during the summer to high accuracy. "This is the greatest health challenge to face our society in a generation at least. We all need to pitch in and help in any way we can," Ames says. [Caltech story]

Tags: research highlights MCE CMS Aaron Ames Andrew Singletary

Ultrafast Camera Films 3-D Movies at 100 Billion Frames Per Second

10-19-20

Lihong Wang, Bren Professor of Medical Engineering and Electrical Engineering, has developed technology that can reach blistering speeds of 70 trillion frames per second, fast enough to see light travel. Just like the camera in your cell phone, though, it can only produce flat images. Now, Wang's lab has gone a step further to create a camera that not only records video at incredibly fast speeds but does so in three dimensions. [Caltech story]

Tags: EE research highlights MedE Lihong Wang

A Method to Map Brain Circuits in Real Time

10-16-20

A new approach called integrated neurophotonics could allow researchers to track the activity of all the neurons that make up a particular brain circuit. To deepen their understanding of the brain, neuroscientists must be able to map in great detail the neural circuits that are responsible for tasks such as processing sensory information or forming new memories. Now, a new approach may allow for the activity of all of the thousands to millions of neurons within a particular brain circuit to be observed in real time. Dense recording at depth—that is the key," says Michael Roukes, Frank J. Roshek Professor of Physics, Applied Physics, and Bioengineering. [Caltech story]

Tags: APhMS research highlights Michael Roukes

New Device Powers Wearable Sensors Through Human Motion

10-16-20

Wei Gao, Assistant Professor of Medical Engineering, has been developing sensors as well as novel approaches to power them. Previously, he created a sensor that could monitor health indicators in human sweat that is powered by sweat itself. Now, Gao has developed a new way to power wireless wearable sensors: He harvests kinetic energy that is produced by a person as they move around. "Instead of using fancy materials, we use commercially available flexible circuit boards," he says. "This material is cheap and very durable and mechanically robust over long periods of time." [Caltech story]

Tags: research highlights MedE Wei Gao